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Abstract

Resilience and stability are often identified as valuable characteristics of economic, so-
cial, and natural systems. Various factors contribute to system resilience and stability,
including system complexity, complementary and substitutability, resource stocks and
storage. This paper examines the relationship between storage capacity and system
stability in a managed hydrologic system in which an manager maximizes the value
of stochastic inflows using available storage capacity to affect outflows over time. We
first develop theoretical foundations for optimal storage utilization subject to stochas-
tic inflows, limited storage capacity, and an expected utility maximization objective.
We then adopt two metrics relating to system stability that are calculable based on
estimation results from a Vector Auto-Regression (VAR) framework. In this context,
Reactance describes the scale of initial reaction of optimized outflows to an inflow shock
(e.g. a drought or heavy precipitation), and resilience describes the rate of return to
steady-state outflows following an inflow shock. Based on this framework we simulate
how water storage capacity constraints and preferences over intertemporal water alloca-
tion affect system stability as measured by outflow variance, reactance, and we estimate
the economics value of these metrics in the context of the hydroeconomic system.

Keywords: Stability, reactance, resilience, stochastic inflows, outflows, storage capacity, change in

storage, managed hydrologic system, eigenvalue, steady-state equilibrium



1 Introduction

Resilience and stability are often identified as important and valuable characteristics of economic,

social, and natural systems. In agricultural systems for example, yield stability is a desirable system

property (Sileshi et al., 2012; Abbo et al., 2010), since large variations in yield can have impactful

income and food security consequences. Beddington et al. (1976) and Berardi et al. (2011) iden-

tify resilience and stability as critical properties of general dynamic systems, and are quantifiable

measures of a system’s ability to respond to stochastic variation and persist in stochastic dynamic

environments.

Natural hydrologic systems such as watersheds are complex and often characterized by large

stochastic variability in inflows through precipitation, temperature, and percolation. Artificial water

storage and control rules are often implemented to manage temporal variability in water supply to

smooth outflows. For instance, reservoirs in a river can be used to store water between the spring

freshet and the irrigation season, or to help contain floods and save water for drought. In this way,

storage serves two related roles: It can be used to transfer resources from one time period to others

in response to intertemporal preferences, and to buffer against extreme occurrences such as floods

and droughts. In other words, water storage can be used to increase stability in stochastic dynamic

systems.

Relative storage capacity constraints limit how effective water storage can be used to manage

inflow fluctuations. For example, Graf (1999) studied impacts of water storage on river discharge

in the continental U.S. states, and finds that in the Great plains, Rocky Mountains and the arid

Southwest where large reservoirs hold up to 3.8 times the mean annual runoff, impacts on river

discharge are significantly greater than other regions (Northeast and Northwest regions), where

storage is only up to 25% of the mean annual runoff. The ratio of reservoir capacity to mean annual

flow is termed the Impounded Runoff Ratio (IBI; Batalla et al., 2004), and has been shown to be

major determinant of the effectiveness of dams and reservoirs in regulating downstream flow (Kondolf

and Batalla, 2005). Reservoirs with low IBI (<0.5) are limited in their ability to regulate flow, and in

turn managing system reactance and resilience. Importantly, the size of the impoundment, expressed

hydraulically or otherwise, only captures the potential to manage flow; empirically, it is observed
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that flow management effectiveness is just as dependent on the operational decision making or spill

control rules implemented with each reservoir (Katz & Luff, 2020). Thus, forecasting the values

added by deploying large storage is difficult and may provide limited marginal value for managing

system stability.

A system’s stability can be decomposed into at least two components: reactance and resilience.

Reactance reflects a system’s tendency to deviate from equilibrium or steady-state in immediate

response to an exogenous disturbance (Ives et al., 2003; Neubert and Caswell, 1997), and is ana-

lytically homologous to damping in a vibrating mechanical system. Resilience, or reciprocal return

time, represents the speed with which a system returns to its original, pre-disturbance position or

state (Holling, 1973; Webster et al., 1975; Pimm, 1979; Neubert and Caswell, 1997). In a water

system in which a manager uses storage to manage outflows over time in response to stochastic

inflows, reactance would reflect the size of initial deviations in outflows (as a measure of system

performance) from their equilibrium immediately following an inflow shock. Resilience describes the

rate at which outflows return to steady state after a one-time inflow shock.

The objective of this paper is to investigate how active water storage management is translated

into system stability as measured by reactance, resilience, and related stability measures of economic

interest. We construct a theoretical model of a simple managed water system with stochastic inflows

and limited storage capacity. We link this theoretical model to a vector auto-regression (VAR)

model from which reactance and resilience metrics can be defined and extracted. We then develop

a simulation model to examine the effect of storage capacity on system reactance, resilience and

related stability measures, and how the economic value of the managed resource relates to these

measures.

We begin with a water balance or “budget" equation describing the inter-period flow of water

in and out of a system given stochastic inflows and storage capacity to manage outflows (Feiring

et al., 1998). A storage manager maximizes the present expected discounted utility of outflows for

all periods into the future. We show that both the optimal storage policy rule and its induced

optimal outflow path depend on the distribution of inflows, storage capacity, and time and outflow

preferences for managing storage.

The joint evolution of the optimal storage and outflows can be characterized by a structural
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vector auto-regression (SVAR) model, the stability characteristics of which are embodied in the

Jacobian Matrix of a VAR, which relates current states of the system with past states. We adopt

stability measures developed in the community ecology literature (Ives, 1995; Neubert et al., 2009),

and apply them in the hydrology context. Specifically therefore, Reactance describes the scale of

initial response of optimized outflows to an inflow shock such as a drought or heavy precipitation,

and resilience describes the rate of the system’s return to steady-state outflows following an inflow

shock. Together, these measures describe what can be conceived of a system-level impulse response

function like those commonly constructed in economic applications of VARs.

We illustrate the implications of our model with a set of simulations. Given stochastic water

inflows and managed storage, we show that a water system’s reactance (short-term response) is

affected by storage capacity relative to the distribution of inflows. In comparison, resilience is

affected by both storage capacity and the discount factor with which storage is managed. Greater

system stability is observed when the storage capacity is appropriately large and managed with a

low discount factor. Second, we verify that lower variability in outflows provide greater utility (or

satisfaction) from outflow use, assuming outflow utility is of a quadratic form. In addition, we show

the value of storage for providing smooth outflows is subject to the law if diminishing marginal

returns. Finally, we identify that nearly 95% of the value of water storage for achieving stability in

outflows can be attributed to reduction in reactance.

Our findings contribute to the literature on water resource management and system stability of

both the economics and ecology literature. Previous economics studies on the impacts of hydrologic-

fluctuations and extremes on economic growth are numerous (Barrios et al., 2010; Sadoff et al., 2015;

Borgomeo et al., 2018; Brown and Lall, 2006). These studies find that rainfall variability significantly

impacts GDP on local, regional and global scales. Perhaps the closest study to ours is that by (Brown

and Lall, 2006), who study the role of water storage in relationship between rainfall variability and

GDP for 163 countries. They propose a water resources index that specifies storage infrastructure

requirements needed to reduce rainfall variability impacts on water availability for economic activities

in different countries. Like Brown and Lall (2006), we illustrate the role of storage capacity for

dampening horologic variability, but we dissect system response into two important component

parts, and examine the economic value of water storage through these component parts of system
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stability in a minimally complex, abstract context.

Applying the concepts of stability, resilience and reactance from the fields of ecology and water

resource engineering to study a water system in an economics framework is one of our most significant

contributions. We show that the idea and measurement of resilience in the ecology literature is closely

related to impulse response functions in economics. The growing coherence between non-economics

approaches and traditional economics ideas for tackling water resource issues as noted by Jain and

Singh (2003) and Heinz et al. (2007), makes it useful to synthesize ideas from these fields to provide

richer insights for designing strategies for managing dynamic natural resource systems.

Finally, our study highlights how resilience concepts, measurement, and interpretation may differ

between modeled ecological systems and economic systems that explicitly incorporate an optimiza-

tion process. First, In most modeled ecological systems, a rapid rate of return to a steady-state

is taken to reflect a resilient system, which is in turn generally (perhaps implicitly) presumed to

be a positive attribute. In contrast, optimization under standard assumptions of expected util-

ity maximization given diminishing marginal utility implies an outflow smoothing process that in-

duces a system-level slower return to steady state when storage is available. Resilience can be nur-

tured through policies and measures that allow a system to better withstand external disturbances

(Briguglio et al., 2009), but interpretation of the resilience metric in particular may be qualitatively

inverse in managed systems relative to systems more similar to those typically encountered in ecol-

ogy. Second, in non-economic systems, shocks themselves are often implicitly prejudged as bad.

However, economic agents may in fact benefit from system shocks, even if they are risk averse. A

water system in which the marginal utility of water is high for average inflows can benefit from

unusually high inflows, especially if there is sufficient storage to capture runoff for use in a later

periods when it is more valuable. In such situations where a system may benefit from a shock, quick

recovery as emphasized in the study of non-economic systems is not necessarily always the most

beneficial outcome. Recognizing these fundamental differences can be important for understanding

resilience in both managed economic systems and unmanaged systems such as those modelled in the

ecological literature.

The remainder of this paper is organized as follows. In section 2 we introduce a water “budget"

equation describing the flow of water in and out of a system, and develop a dynamic stochastic
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programming model for optimal water use by managing storage to control outflows for consumption

over time in section 3. We then construct a structural Vector Auto-regression (SVAR) model using

endogenous functions of the optimal water storage and outflows policy rules in Section 4, and proceed

to derive measures of resilience and reactance from the (SVAR) model. In section 5, we provide,

implement, and discuss results from a numerical example of our model, and conclude in section 6.

2 The water budget

Consider the following features of a simple water system defined by inflows, storage in a single

reservoir, and outflows all conceptualized on a seasonal annual timeline. Storage is held in a reservoir

for the option to use it next year. Rain falls in the spring, water is used for irrigation in the summer,

and unused water from inflows and last year’s storage is stored over the fall and winter This flow

pattern is depicted in Figure 1.

Fall/Winter Spring Summer Fall/Winter

st−1 it ot st

Figure 1: Timing of storage, inflows, and outflows.

Outflows ot provide value in use, and storage provides value indirectly by allowing available

water to be distributed across periods according to decision maker preferences. From an annual

perspective, ot and st are jointly determined conditional on predetermined st−1 and it, which are

both known at outflow decision time. The flow of water in and out of a reservoir system can be

described with water balance equation (Feiring et al., 1998)

st−1 + it = ot + st. (1)

The water balance Equation (1) can be rearranged as

ot = it −∆st, (2)
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where ∆st = st − st−1 is the change in the amount of water in storage between periods.1

The quantity of water held in storage must be non-negative, and is constrained by a maximum

storage capacity s̄. Define ∆̄st = (s̄ − st−1) as the remaining excess storage available at time t

(that is, carry-over storage capacity from the last outflow/storage decision). The storage constraints

st ∈ (0, s̄) imply the following constraints in ∆st:

− st−1 ≤ ∆st ≤ ∆̄st, (3)

which is to say that storage cannot be reduced by more than the amount available in storage, and

cannot be increased by more than the space available given last period’s storage level.

Assume that inflows follow an intertemporally independent stationary stochastic distribution

it
iid∼(µ, σ2) where µ and σ2 are its mean and variance respectively. Inflows can then be characterized

as

it = µ+ vt, (4)

where v
iid∼ (0, σ2) is random variation around the mean. Substituting the right side of Equation 4

into Equation 2 provides

ot = µ+ (vt −∆st). (5)

Equation 5 shows that outflows depend on mean inflows, inflow deviations from the mean, and the

change in storage.

3 Outflow goals and storage requirements

Storage can be used to “move” water release over time by holding inflows to be released from storage

for later use, perhaps because the marginal value of water is higher at a later time. It can also be

used to reduce the variance in outflows subject to variable inflows and a storage constraint, if this

is consistent with management objectives. This paper focuses on the former use of storage.

We develop a general expected utility maximization model and derive optimal policy rules for

storage and outflows subject to a storage constraint, and the stationary inflow distribution. We

1We omit evaporation and other loss for simplicity.
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then develop a structural vector Auto-regression (SVAR) model using the joint evolution of the two

policy functions and conduct simulations to show the relationship between storage constraints and

outflow outcomes and the measures of system stability (reactance/resilience).

3.1 Outflow utility maximization

Suppose a social planner chooses a state-contingent outflow plan that maximizes the discounted

expected value of outflows into the future. The social planner’s optimization problem is to choose

the optimal outflow sequence {o∗t }t≥0 that maximizes

V0 = IE

[ ∞∑
t=0

βtu(ot)

]
(6)

subject to

ot = it −∆st, st +∆st ≥ 0, ∆st ≤ ∆̄st and s0 given.

IE[·] is the expectation of future outflows conditional on all information available at time t; β ∈ (0, 1)

is a discount factor that accounts for the agent’s preference for present versus future outflows; u

is a one-period utility (pay-off) function from outflows, assumed to be smooth, strictly increasing

and strictly concave with lim
o→0

u′(o) = ∞ and lim
o→∞

u′(o) = 0. All other variables are the same as

described in previous sections.

In recursive or Bellman form (Bellman, 1957; Ljungqvist and Sargent, 2012), the agent’s sequen-

tial problem in 6 after substituting out the water budget constraint is

Vt(∆st, it) = max
{∆st}

[u(it −∆st) + βIEt[Vt+1(∆st+1, it+1 | ∆st, it)]] (7)

subject to

st +∆st ≥ 0, ∆st ≤ ∆̄st, s0 given.

In Lagrangian form, Equation 7 can be written as

Vt(∆st−1, it) = max
{∆st,λt,γt}

[
u(it −∆st) + βIEt [Vt+1(∆st, it+1 | ∆st−1, it)] + λtC̄ + γt

¯
C
]
. (8)
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C̄ = [∆̄st −∆st] is the difference between unused storage capacity and additions to storage.
¯
C =

[st−1 + ∆st] is the difference between existing storage and withdrawals from storage. The former

represents an upper capacity constraint and must be non-negative because net additions to storage

cannot be larger than available capacity. The latter represents a storage non-negativity constraint on

storage, and must be non-negative because net withdrawals from storage cannot be larger than the

amount available to withdraw. In other words. Physically speaking, you cannot add water to a full

storage vessel, and you cannot withdraw more water from storage than there is. Lagrange Multipliers

λt and γt are associated with the upper and lower bounds on storage changes, respectively.

The Lagrangian value function equation 8 provides the maximal value that can be obtained from

a given state, defined by the pair (∆s, i), after considering all feasible policy actions. The feasible

sequence of storage levels and their corresponding induced sequence of outflows that satisfy the value

function are optimal. Following Wales and Woodland (1983), the Kuhn-Tucker (KT) necessary and

sufficient conditions required to obtain a solution for the problem in 8 are

u′(it −∆st)− βIEtu
′(it+1 −∆st+1) + λt − γt ≦ 0 ≦ C̄ (9)

−C̄ ≦ 0 ≦ λt (10)

−
¯
C ≦ 0 ≦ γt. (11)

The double inequalities in conditions 9 through 11 imply that the two terms on either side of zero,

when multiplied together gives zero. In 9, the first term is an inter-temporal equilibrium condition,

obtained by taking the derivative of 8 with respect to ∆st, and applying an envelope condition

(Maliar and Maliar, 2013) to arrive at that expression (see appendix A for full derivation). The

optimized Lagrange multiplier λt represent the marginal value of additional storage, and optimized

γt represents the cost of the constraint on storage overdraft.

In any given period t, only one of three possible storage outcomes can occur given optimized

outflows: (i) storage between zero and s̄, (ii) storage equal to capacity s̄, and (iii) zero remaining

storage, 2). Below, we derive the optimality conditions that lead to each respective outcome.
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Case i: Neither storage constraint is binding. If the optimal storage is between zero

and the maximum storage capacity (0 < s∗t < s̄ or −st−1 < ∆s∗t < ∆̄st), neither storage constraint

is binding and λt = γt = 0. KT conditions (9, 10, 11) that ∆s∗t must satisfy the inter-temporal

equilibrium condition

u′(it −∆st) = βIEtu
′(it+1 −∆st+1). (12)

The equilibrium condition (12) is an arbitrage condition that must hold whenever preferred outflows

o∗t are such that the associated change in storage is not constrained by storage capacity or storage

availability, and next period storage falls between zero and storage capacity: s∗t+1 = st + it − o∗t ∈

(0, s̄).

Case ii: Storage capacity s̄ is binding. If at time t the manager would prefer and would

use more storage capacity if it were available, optimal constrained storage at time t would be at

capacity s̄, and ∆s∗t = ∆̄st), with λt > 0 and γt = 0. From the KT conditions (9, 10, 11), the

optimal storage ∆s∗t = ∆̄st, satisfies the following condition

u′(it −∆st) = βIEtu
′(it+1 −∆st+1)− λt. (13)

The intuition for 13 is that whenever the upper limit constraint on storage binding, some amount

water or runoff goes uncaptured, constituting extra spill. Having extra spills (outflows) imply lower

marginal utility of outflows (lower by −λt). The value of additional storage capacity λt (the cost of

the storage constraint) is positive in this case.

Case iii: Non-negativity constraint on storage is binding. When current storage and

inflows are low, the manager may want to release all available storage and current inflows to maximize

current outflows, and might like to release more if more were available. Under this condition of

current scarcity, the non-negativity constraint on storage would be binding: st +∆s∗t = 0; and and

λt = 0 and γt > 0. The associated KT condition is

u′(it −∆st) = βIEtu
′(it+1 −∆st+1) + γt. (14)
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In Equation 14, the marginal utility of present outflows will exceed the marginal utility of future

outflows (by γt) when the current water endowment of storage plus inflows is low, and the cost of

being unable to borrow water from future use is positive.

3.2 Storage and outflow policy rules for quadratic utility of outflows

We now introduce a specific utility function to illustrate the decision space more concretely and to

provide the specificity necessary to implement useful simulations. Following the lead of Homayounfar

et al. (2015) and Khadem et al. (2020), assume the following quadratic utility function for outflows:

u(ot) = ot −
1

2ô
o2t , ô > 0, ot ≥ 0. (15)

This form implies diminishing marginal utility and risk aversion in outflows (u′(o) = (1− 1
ôo) >

0, u′′(o) = −1
ô < 0). Utility is maximized at ot = ô, meaning that more outflows are preferred up to

ô, beyond which additional outflows provides diminishing value. Utility remains positive up to 2ô,

at which point utility associated with additional outflows is negative. diminishing marginal utility

could be interpreted as an overabundance relative to the ideal amount, and the negative utility range

would be analogous to destructive or costly flooding that reduces utility to the point that having

none would be preferred.

Applying the utility function in 15 to the equilibrium conditions 12, 13, and 14 and letting

δ = (1− β) ∈ (0, 1) represent one minus the discount factor for brevity provides the optimal policy

rules for storage and its induced optimal outflow function, respectively (details in Appendix B):

s∗t =



st−1 + vt − δ (ô− µ) if 0 ≤ s∗t ≤ s̄

s̄ if st−1 + vt > s̄+ δ (ô− µ)

0 if st−1 + vt < δ (ô− µ) ,

(16)
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or equivalently in terms of changes in storage,

∆s∗t =



vt − δ(ô− µ) if 0 ≤ s∗t ≤ s̄ ⇔ −st−1 ≤ ∆s∗t ≤ ∆̄st

∆̄s if vt > s̄+ δ (ô− µ)

−st−1 if vt < δ (ô− µ) ,

(17)

Optimal outflows can be calculated by substituting optimal storage as

o∗t = µ+ (vt −∆s∗t ) or equivalently o∗t = µ+ zt, (18)

where zt ≡ (vt −∆s∗t ) is the stochastic part of outflows after subtracting the chosen storage change.

Consider the policy rules for changing storage (∆s∗t ) in Equation 17, beginning with a special

case. Suppose the mean inflow µ by chance exactly equals the outflow satiation point ô defined by

the utility function, and suppose also that for the current period of interest, storage constraints are

non-binding such that the first line of Equation 17 applies. In this special case, δ(ô − µ) = 0, and

therefore ∆s∗t = vt. The optimal storage change will exactly equal inflow deviation for that period.

Further, if storage constraints happen to never bind, optimal outflows would be constant and equal to

µ in each and all periods. This result is not inconsistent with models such as the permanent income

hypothesis (Friedman, 1957; Carroll, 1997) and other related models that suggest individual and

social preference for consistency in dynamic environments (Grant et al., 2000), and illustrates the

a fundamental preference for lower variance in consumption that follows from diminishing marginal

returns to consumption.

If in contrast ô > µ such that mean inflows are lower than preferred and water is scarce on

average, and storage constraints are again nonbinding, ∆s∗t will be lower than vt (by δ(ô− µ) > 0)

due to time preferences (represented by δ = (1−β)), and over time there will be a drift in s∗t toward

the lower storage constraint st = 0. If on the other hand ô − µ < 0 such that there is more water

on average than preferred, and storage constraints are non-binding, then ∆s∗t will be slightly higher

than vt because the agent on average prefers less water and discounts the future. As a result, there

will be an upward drift in s∗t toward s̄. Any perturbations of vt large enough away from the nearest

storage constraint will offset this drift temporarily, leading to perturbations away from whichever
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storage constraint (0 or s̄) storage choices tend toward.

When storage constraints are binding such that they limit outflows to be either too low or too

high relative to unconstrained arbitrage (lines 2 and 3 of equations Equations 16 or 17), the manager

simply either releases all available water for current consumption, or uses all available storage to

hold as much back as possible.

4 Empirical measures of system Stability

The joint dynamics of outflows o∗t and water storage s∗t based on the policy functions shown in 16 and

18 can be empirically represented as a structural vector auto-regression (SVAR) model. Vector Auto-

regression (VAR) is the analogue to Multivariate Auto-regression (MAR) in Biostatistics literature

(Hampton et al., 2013). This statistical regression-based representation allows indirect estimation

of well-defined measures of system stability in the form of resilience and reactance metrics.

Above, we introduced a specific utility functional form for specificity to support simulations

and exposition, and it is now useful to adopt a specific inflow distribution to introduce a statistical

regression model to represent a system whose stochasticity comes from inflows. For our purposes

it is convenient and reasonable to assume that inflows follow a lognormal distribution (Bowers

et al., 2012). To be consistent with the notation used above, let it ∼ Lognormal(µ, σ2) so that

ln(it) ∼ N (µ, σ2), and vt ∼ N (0, σ2).

The Policy functions in 16 and 18 show that were it not for storage constraints, the relationships

between o∗t and s∗t and their past values could be represented by a pair of linear (in parameter)

regression functions. However, the storage constraints add non-linearity to these relationships. They

can nonetheless be approximated to the first-order with the following two variable Structural Vector

Autoregression of order 1 (SVAR(1)). Further, water budget Equations 2 and 5 suggests that if

inflows are lognormal, variation in outflows will likely be approximately lognormal as well. We

therefore apply notation to recognize log-linearity in outflow relationships. The first-order SVAR

model that follows from our theoretical model can be written in linear matrix form as

13



 1 α12

α21 1


︸ ︷︷ ︸

A

 s∗t

ln(o∗t )


︸ ︷︷ ︸

Xt

=

γ10
γ20


︸ ︷︷ ︸

Γ0

+

γ11 γ12

γ21 γ22


︸ ︷︷ ︸

Γ1

 s∗t−1

ln(o∗t−1)


︸ ︷︷ ︸

Xt−1

+

β11 β12

β21 β22


︸ ︷︷ ︸

B

vt
zt


︸ ︷︷ ︸

εt

, (19)

Where Xt is a 2× 1 vector of the values of optimal storage and outflows in period time t; Xt−1 is

the observation of X one period back; Γ0 is a 2× 1 vector of constants; Γ1 is a 2× 2 time-invariant

co-efficient matrix; and εt is a 2×1 vector of structural shocks. The structural matrix A defines the

contemporaneous relationship between o∗t and s∗t , and B defines the contemporaneous relationship

between the structural shocks in εt.

To statistically identify the structural components of 19, identification restrictions are typically

imposed on the structural matrices A and B. Hence, for the matrix A we impose the identification

restriction that a12 = a21 = 0, meaning shocks to optimal storage will only affect optimal outflows

by a lag; and similarly shocks to optimal outflows will only affect optimal storage by a lag. Thus,

Shocks do not contemporaneously affect the both optimal storage and outflows.

For matrix B, a common identification restriction is to set it equal to the identity matrix (that

is, B = I2×2). We follow this convention and set B equal to the identity matrix so that εt satisfies

the following conditions:

1. E(εt) = 0 - each structural error term has mean zero

2. E(εtε
′
t) = Ω - where Ω is a 2 × 2 positive semi-definite contemporaneous covariance matrix

of the structural shocks (errors)

3. E(εtε
′
t−k) = 0 for any non-zero k - meaning there is no correlation across time, in particular,

no serial correlation in the individual structural error terms.

With above restrictions on A and B, system (19) is functionally equivalent to a reduced form

VAR(1):

 s∗t

ln(o∗t )


︸ ︷︷ ︸

Xt

=

γ10
γ20


︸ ︷︷ ︸

Γ0

+

γ11 γ12

γ21 γ22


︸ ︷︷ ︸

Γ1

 s∗t−1

ln(o∗t−1)


︸ ︷︷ ︸

Xt−1

+

vt
zt


︸ ︷︷ ︸

εt

, (20)

or compactly,

Xt = Γ0 + Γ1Xt−1 + et. (21)
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The Jacobian matrix Γ1 in system (20) represents the time-invariant relationship between o∗t and s∗t ,

and various articles in the ecology literature derive system stability information from it (Beddington

et al., 1976; Ives, 1995; Neubert and Caswell, 1997; Ives et al., 2003; Neubert et al., 2009). Specifically,

these studies define system Resilience as the largest value of the real eigenvalue λ of Γ1 denoted by

ρ1 ≡ max(Re(λ(Γ1))). (22)

provides information about the asymptotic response of a system to external shocks. Neubert and

Caswell (1997) show that the magnitude of the resilience metric ρ1 reflects how quickly a system

recovers following an exogenous shock; quick return (high system resilience) is associated with low ρ1.

The characteristic return time to equilibrium following a shock defined in terms of ρ1 is (Beddington

et al., 1976):

tr =
1

1− |ρ1|
. (23)

In 23, the shortest return time is 1, which occurs when ρ1 = 0, meaning a shock is fully absorbed

by the system in one period. On the other hand, the longest return time is infinite, which occurs

when ρ1 is large (ρ1 = 1), which corresponds to a random walk. The system is considered unstable

when ρ1 ≥ 1. A close relationship exist between the above ecological definition of ρ1 and impulse

response functions in economics literature. See the connection between the two in Appendix A.4.

A measure of reactance can be calculated as the largest eigenvalue of the Hermitian (or sym-

metric) matrix H = (Γ1 + ΓT
1 )/2, where ΓT

1 is the transpose of matrix Γ1 (Neubert and Caswell,

1997). We denote largest eigenvalue–λH of matrix H as

ρH1 ≡ max
(
λH(H)

)
. (24)

A system is considered reactive when ρH1 is positive, but non-reactive when ρH1 is negative (Neubert

and Caswell, 1997; Tang and Allesina, 2014). According to Ives (1995), “a highly reactive system

tends to move farther away from a stable equilibrium immediately after a perturbation, even though

the system will eventually return to the equilibrium point,” suggesting that a system with a smaller

(less positive) reactivity measure is less immediately responsive to shocks, even if it is, stable.
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Together, resilience and reactance metrics ρ1 and ρH1 provide stability information for the system

defined in Equation 20. The values ρ1 and ρH1 do not necessarily need to have the same sign. If for

example ρ1 < 0 and ρH1 > 0, the system would be stable but reactive, so that even small shocks will

initially be magnified before eventually dying out (Neubert and Caswell, 1997).

5 A Numerical Example

In this section we provide a numerical illustration of our model for two purposes: to illustrate the

relationships between water storage capacity and outflow variance, resilience, and reactance; and

to estimate the economic value of water storage and changes in reactance, resilience, and outflow

variance.

5.1 Implementation

We generate a single time series of 10000 independent and identically distributed inflows (i) from a

standard log-normal distribution with mean µln(i) = 0, variance σ2
ln(i) = 1.2 Given the characteristics

of the Lognormal distribution, this implies expected value and variance of inflows of µi ≡ IE[i] =

e

(
µln(i)+

1
2
σ2
ln(i)

)
= e(1/2) = 1.65 and σ2

i ≡ Var[i] = 4.67 respectively (first introduced in Equation 4).

The median of this distribution is mi = eµln(i) = 1. The initial storage level s0 is set to s0 = 0.

We use the quadratic outflow utility specification introduced in Equation 15 that we previously

used to illustrate storage rules. The parameter ô in the utility function is set at ô = 1
2µi or ô = 3

2µi

so that on average, inflows are half or one and a half of the ideal amount of ô. Negative utility can

occur in any given period if ot > 2ô if inflows exceed storage capacity sufficiently. This is more likely

when mean inflows µ exceed ô.

The representative agent (water manager, social planner), acts under an expected utility function

defined by Equations 6 and 15, with time preference parameter β and risk preference parameter k

combinations as follows:
2The assumption of independent and identically distributed inflows is not without limitation, since ENSO

climate cycles lead to inter-annual precipitation cycle and correlation in inflows, see (Wassmann et al., 2009).
Future work could look at the scenario where inflows follow an AR(1) process, for instance.
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1. β = 0.95, ô = 1: Agent is relatively patient and risk averse;

2. β = 0.95, ô = 10: Agent is relatively patient and risk tolerant;

3. β = 0.5, ô = 1: Agent is relatively impatient and risk averse;

Recall that utility increases in outflows up to ô, and then decreases. The second-order curvature

of this quadratic implies a tight inverse relationship between risk preferences and the most preferred

outflow level simply by virtue of the quadratic functional form.

It is important to add that an alternative way to model the discount rather than treating it

as exogenous, is to model it as endogenous where β incorporates “visceral" influences in managing

storage inter-temporarily. Specifically, visceral influences mean the decision maker’s discount factor

takes the form β(τ ) where τ is a vector of visceral states, example the general nature of water

scarcity in an area, the type of water users catered to in an area, the kinds of opportunity costs

faced in the period etc. Visceral influences are crucial to intertemporal choice because they can

give rise to behaviors that may look extremely impatient or even impulsive, as they increase the

attractiveness of certain options (Frederick et al., 2002).

Given that the expected inflow level is fixed for this simulation at µ = 1.65, when ô = 1, so that

inflows are on average above preferred outflow levels. In contrast, at ô = 10, average inflows are

about 16 percent of preferred outflows, indicating water scarcity on average.

We compute optimal storage (s∗) and outflow (o∗) sequences using Equations 16 and 18 respec-

tively, for twenty different storage capacities s̄ = µ × {x : x ∈ (1, 2, . . . , 20)}. We present results

for the first 200 time periods in the form of time series plots to provide visual illustrations for the

distributions of optimal storage s∗ and outflows over time o∗.

Using the simulated data on s∗ and ln(o∗), we estimate the reduced form (VAR) specification

in 20. The eigenvalues representing resilience ρ1 and reactance ρH1 are then obtained from the

estimated Γ1 matrix for all twenty storage scenarios. Characteristic return times tr are computed

using estimates of ρ1 in Equation 23.

We then compute the expected present indirect utility of Optimal outflows using the value

function:

V ∗
0 = IE

[
5000∑
t=1

βt

(
o∗ − 1

2ô
o∗2

)]
, (25)
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which is obtained by substituting the quadratic utility function in 15 into the objective function

in 6. V ∗
0 represents the total indirect utility (interpretable as economic value) provided by a given

sequence of optimal outflow levels.

5.2 Simulation Results

Figure 2 shows simulation results for optimal storage (s∗), storage change (∆s∗), and outflows (o∗)

obtained for three different time preference water scarcity combinations (β, ô), compared across three

storage capacity scenarios with storage capacity of one, five and ten times the expected inflow level

µi.

The top and middle rows of figure 2 show that regardless of the time and risk preferences by

which storage is managed, both optimal storage (s∗) and optimal storage change (∆s∗) are biggest

when storage is largest. At the same time, the lower row shows that the outflow variance (var [o∗])

decreases towards zero as storage capacity is increased from one to ten times the expected inflow

level. The optimality conditions shown in Equations 12, 13 and 14 imply that smooth outflows are

preferred, and more storage capacity, s̄, allows inflow variation to be more effectively dampened by

changing storage.

The last column of figure 2 shows that the impatient agents facing water scarcity (β = 0.5, ô = 1)

hold the most water in storage on average (mean[s∗] = 12.66). In this simulation the agent also faces

an overabundance of water (ô = 1 < µi = 1.65), which manifests in holding water back in storage to

reduce flows in the current period at the risk of exacerbating an upper storage constraint next period.

In contrast, a more patient agent with the same level of risk aversion (β = 0.95, ô = 1) will tend to

accept more of the overabundant outflows in order to save storage space (mean[s∗] = 7.84) to mitigate

the risk of future flooding contributed by storage capacity constraints. This patience provides a lower

variance in optimal outflows (var [o∗] = 1.76) than the impatient agent (var [o∗] = 3.03). The patient,

risk tolerant, but water-scarce agent holds less in storage on average (mean[s∗] = 3.31), but also

maintains the lowest outflow variance (var [o∗] = 1.18).

Figure 3 shows relationships between standardized storage capacity (¯̄s ≡ (s̄−µ)
σ2 = (s̄−1.65)

4.67 ), and

optimal outflow variance, outflow reactance (ρH1 ), resilience (ρ1), and return time to steady state

(tr). We use standardized storage levels ¯̄s for graphical illustration because it normalizes storage
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Figure 2: Optimal storage, storage change, and outflow distributions for three storage
capacity scenarios. Each distinctly colored dash line depicts a distinct time –– risk
preference combination (β, k) with which storage is managed.
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relative to the inflow distribution for more consistent comparisons. In the top panels of figure 3,

smaller values of both optimal outflow variance and reactance (ρ1) are associated with larger levels

of standardized storage capacity (¯̄s).

As shown in figure 3 (top left), the fastest decline in optimal outflow variance as standardized

storage capacity increases is observed where storage is managed by a patient, risk-tolerant agent

(β = 0.95, k = 0.1) in the scenario where water is scarce (ô == 10 > µ = 1.65). A patient, risk-

tolerant agent tends to smooth outflows over time most effectively such that outflow variance is lowest

over all standardized storage capacities. This coincides with the highest reactance as well (upper

right), reflecting a willingness and ability to respond to large inflow shocks with correspondingly

large changes in storage. in our scenario, the impatient agent (β = 0.5) is the least effective at

reducing outflow variance for a given standardized storage capacity. This is reflected in lower system

reactance.

Figure 3: Relationships between standardized storage (¯̄s) and optimal outflow vari-
ance, reactance (rH1 ), resilience (r1), and return time to steady state (tr).

The bottom row of Figure 3 show relationships between standardized storage capacity (¯̄s), and
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resilience (ρ1) and return time (tr). The patient, risk-tolerant, water-short agent (β = 0.95, k =

0.1) creates an inverted “U-shaped” resilience function that then flattens as standardized storage

increases, and a short return time to steady-state. Increasing from low standardized storage capacity

increases the agent’s ability to spread inflow shocks across more periods to minimize outflow shocks

in any single period, but only up to a point. Initially, this generates stronger inter-temporal auto-

correlation in optimal outflows, and consequently, larger resilience values (ρ1), and longer return

time to steady state. Past the peak of the inverted “U” however, additional increases in storage

capacity allow inflow shocks to be dampened quickly (immediately in the case of very large storage

capacity), leading to lower inter-temporal auto-correlation in optimal outflows and low measured

system resilience (ρ1) values, and faster return times return time to steady state (tr). The flat part

of the curve suggests that as storage capacity increases beyond a certain point, more storage becomes

inconsequential with respect to impacts on resilience and return time to steady state.

Figure 4: Relationships between optimal outflow value (V ∗
0 ) and outflow variance,

standardized storage capacity (¯̄s), resilience (ρ1), and reactance ρH1 , compared across
three time and risk preference parameterizations.
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In the the other two scenarios (black and green curves in the bottom panels of figure 3), both

the patient, risk-averse (β = 0.95, k = 1) agent and the impatient, risk-averse (β = 0.5, k = 1)

agent manage storage in an environment where there is an overabundance of water. An increase

in storage capacity only provides a means to accumulate more water and will thus be less flexible

in optimally changing storage from period-to period. This rigidity in changing storage as indicated

by lower reactance propagates stronger auto-correlation in outflows, which correspond to larger

resilience values, and longer return time to steady state. Here, the effect of increases in storage

capacity increase resilience, and return time quickly reaches near maximum. Return times continue

to increase for the patient agent, but top out at about 15 periods for the impatient one.

Figure 4 illustrates relationships between optimal outflow value (V ∗
0 ) (measured by the present

expected indirect utility of optimal outflows) and optimal outflow variance, standardized storage

capacity (¯̄s), and resilience (ρ1) and reactance (ρH1 ), compared across the three time utility param-

eterizations.

The top row of Figure 4 corresponds to a patient, risk-averse agent. For this agent, optimal

outflow variance (leftmost column) is inversely related to optimal outflow value. Expected net

present value declines relatively slowly as optimal outflow variance increase. The second column

shows that the economic value of storage initially increases rapidly with increases in standardized

storage capacity ¯̄s and then flattens out as standardized storage capacity continuous to increase for

the patient, risk-averse agent, illustrating diminishing returns consistent with Langbein (1959). A

positive relationship is observed between resilience (ρ1) and economic value in the third column, top

row graph. In contrast, a negative relationship is observed between reactance (ρH1 , rightmost column)

and economic value. Larger resilience values in this context are consistent with the preference to

spread inflow shocks across more periods, and minimize impacts on a single period where storage

capacity may be limited. The relationships between both system resilience and reactance on the one

hand and expected net present value on the other are relatively linear over the observed range of

resilience for the patient risk-averse agent (β = 0.95, k = 1).

In the other two cases (patient, risk tolerant & impatient), there are ranges of the system

behavior metrics where value is insensitive to changes. The middle row of Figure 4 correspond to a

patient, risk-tolerant agent (β = 0.95, k = 0.1). The left- and right-most columns show steep inverse
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relationships between optimal outflow value and optimal outflow variance, and reactance at low

values, but relative insensitivity of value to changes in system behavior over the rest of their ranges.

In contrast, there are positive, though non-linear relationships between both ¯̄s and ρ1, and outflow

value. For the water-scarce, patient risk-tolerant agent however (middle row), there are broad regions

of value insensitivity for all of the system behavior metrics and narrow threshold range that exhibits

rapid change. We interpret this threshold to be associated with the point at which more storage

provides little value as a buffer against very low inflows and the zero-storage constraint, and is instead

used solely for spreading water at the margin across periods as intertemporal arbitrage. Regardless,

this case is similar to the others in that the economic value of storage exhibits diminishing marginal

returns after some point, but that point is later for the patient, risk tolerant agent relative to the

others.

The bottom row graphs in figure 4 correspond to an impatient, risk tolerant agent (β = 0.5, k =

0.1) in a water-abundant environment. They exhibit similar relationships as the top row graphs,

but with more second-order curvature. Of particular interest is that the expected net present value

of outflows increases rapidly with standardized storage capacity until it tops out, at which point

additional storage does not provide additional value.

5.3 Discussion

Demand for water is often smoother over time than water availability and supply because inter- and

intra-seasonal precipitation variation tends to be larger than demand variation in many parts of the

globe (Nestmann and Stelzer, 2007). Too much water in one period followed by too little water in

the next is economically unfavorable and costly (Brown and Lall, 2006). Economic activities such

as hydropower generation have been noted to be highly responsive to stream flow changes, often

caused by fluctuations in river discharge, which depend on precipitation levels (Wilbanks et al.,

2008; Karl et al., 2009).3 Storage is a fundamental system component that acts to delay, buffer, or

absorb inflow shocks (Meadows and Wright, 2008). It is valuable for mitigating natural variability

and reallocating resources through time (Barnett et al., 2005).

3Nash and Gleick (1993) estimated that hydropower generation in the Colorado River Basin changed by
about 3 percent for every 1 percent change in stream in flow
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Langbein (1959) recognized that the ability to regulate river flow using storage depends on the

size of storage relative to the volume of river flow, although size of storage has been defined incon-

sistently in the literature (Graf, 2005, 2006; Kondolf and Batalla, 2005), and validating empirical

analysis is scarce (Katz & Luff, 2020). More recently, Hansen et al. (2011) have shown that wa-

ter storage is instrumental in providing consistent agricultural production amid weather variations,

and increases the chances of successful harvests in periods of precipitation extremes (floods and

droughts).

The role of storage for achieving stability in a system is measured by its impacts on lowering

variation in outflows, which is dissectable into impacts on statistical measures of variance, reactance

and resilience. We find that storage impacts on reactance and resilience depend considerably on

time-scales and risk preferences that influence storage management. Preferences determine how

storage is optimally varied from period-to-period in a given system, and storage use determines how

outflow variation relate to inflow fluctuations. In particular, our simulations show that whereas

reactance is bigger where optimal storage variance is greater, optimal outflow variance is smaller.

In the same vein, large storage capacity allows storage to be more flexibly manipulated over time

to produce greater resilience in the form of quicker recovery in outflows to a steady-state condition.

Thus, both the amount of storage and the preferences/decisions governing its use determine how

storage capacity affects system stability and its components, reactance and resilience. This result is

consistent with the expectations provided by Pahl-Wostl (2007), who forecast that system resilience

would be affected not only by the physical and infrastructural characteristics defining the system,

but by the governance system acted upon in that system. Ultimately, storage capacity, and the

manner in which it managed has implications for both reactance and resilience.

Apart from storage capacity and management, other differences in natural resource endowments

and system function may allow some water systems to respond better to unforeseen events than

others. For instance, we show in our results that system reactance is considerably lower for systems

that have larger water endowments, compared to systems with smaller water endowments. Briguglio

et al. (2009) explains that systems that lack the necessary endowments and inherent immunity to

external disturbances can be modified by policy-induced actions to boost resilience. Briguglio et al.

referred to this form of resilience as nurtured resilience, suggesting that resilience and stability can
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be affected by identifying inherent vulnerabilities in the system and applying infrastructure and

policy measures to boost immunity against adversity.

There is value in system stability. Basic economic theory and empirical evidence suggests that

people typically (but not always) prefer consistency in consumption. Faced with a series of scholastic

inflow endowments, storage provides a means to capture and release inflows in a manner that gener-

ates consistency in outflows across periods, increasing expected utility from outflows through time.

This relationship between inflows, storage and outflows is structurally analogous to the well-known

income saving and spending rule in economics: given expectations about future income (future

inflows), people will tend to save and borrow (store or release water) when possible to smooth con-

sumption over time (outflows for use). People tend to save when their income is high and draw

down savings when income is low. Like savings, the value of storage therefore depends on how much

consumption security it provides.

Although these system-level metrics of behavior have been viewed as different aspects of system

stability, they are each distinct, represent different components of response, and may not all increase

in value together. For example, in the ecology literature in which this system resilience measure

was developed (e.g. Neubert and Caswell, 1997), a slow return time to steady state (large ρ1) is

often interpreted, even if implicitly, as low system resilience. This contrasts to our economically

optimized system, in which more storage allows for more flexibility to dampen outflow variation,

inducing longer return times and more system resilience to a point. However, systems viewed as

stable based on long return times could possibly be slow to demonstrate early warning indicators

to impending large-amplitude and unstable state changes (Dakos et al., 2008, 2012; Guttal and

Jayaprakash, 2008; Scheffer et al., 2009, 2012). In particular, in systems that are driven by large

amplitude external forcing, high resilience may be undesirable. In these cases, slow response times

and high resilience would limit system level agility, or the ability to respond or adapt to large

amplitude shocks or changes in static forcing (Holling, 1973; Donohue et al., 2016; Goodman, 1975).

Consequently, there may not be a monotonic mapping of stability onto desirability or value in every

case.

The economic value of reactance and resilience as they relate to a water system’s stability are

estimable in terms of outflow value. Both storage capacity and preferences surrounding storage man-
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agement affect the economic values of reactance and resilience. We demonstrate that the economic

value associated with reactance is concave where storage management is characterized by patience

and risk-aversion, but convex where agents are patient risk-tolerant. Also, the marginal economic

value of quick outflow return to steady state (smaller resilience values) is smaller than slow outflow

return to steady where outflow smoothing over time is the main goal. As pointed out by (Donohue

et al., 2016), this contrast between short term shocks and long term press or changes to equilib-

rium states may not accurately reflect the salience of the external drivers or shocks to system level

behavior. How these trade-offs have been deferentially addressed in the economics, ecological and

engineering literatures suggests that this question is ripe for an investment of novel interdisciplinary

investigation.

6 Summary and conclusion

This paper studies the relationship between water storage capacity and system stability and resilience

in a managed hydrologic system in which an agent maximizes the value of outflows, given stochastic

inflows using available storage capacity to affect utilization over time. We develop a theoretical

framework that demonstrates how storage capacity is used to manage water system stability as

measured by variance in outflows, and two other measures calculable from a Vector Auto-regression

(VAR) model; reactance, and resilience. Reactance measures the scale of initial reaction of optimized

outflows to an inflow shock (e.g. a drought or heavy precipitation), and resilience describes the rate

of return to steady-state outflows following an inflow shock.

Our simulations illustrated some of fundamental relationships. First, system reactance and

resilience are affected by both storage capacity and a decision maker’s discount factor and risk

preferences, which together affect how storage is used to manage outflows over time. Second, a large

storage capacity relative to the stochastic inflow distribution is important for managing storage to

achieve low variance in outflows. Third, the economic value of storage is subject to diminishing

returns, which is consistent with the findings of (Langbein, 1959). Fourth, low variance in outflows

presents higher economic value as measured by the present expected indirect utility. Fifth, at any

given storage capacity level, the marginal economic value of reactance and resilience are affected by
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the risk preferences levels of a decision maker.

The methods used in this paper represent a new economic application of system stability mea-

sures developed and interpreted largely in the ecology literature in the context of ecological systems.

In these ecological systems, resilience measured as fast return to steady state and reactance as a

system’s ability to respond to and dampen exogenous shocks to systems are often viewed as positive

system characteristics. In a managed system driven by a preference for outflow stability, a capacity

for flexible system management often leads to what seems to be conflicting outcomes of weaker sys-

tem resilience and reactance as measured by these metrics. the takeaway of this comparison is that

interpreting system stability with these measures of resilience and reactance must be done carefully,

with system fundamentals in mind.

Future extensions of this model could include implementation with real-world data to demon-

strate through structural estimation or calibration. With a fully-fledged quantitative model, the

framework can be used to answer real-world policy questions.
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Appendices

A.1 The inter-temporal equilibrium condition

Here, we derive the inter-equilibrium condition in 9. The first order condition of 8 with respect ∆st

provides

u′(it −∆st)− βIEv′(∆st, it+1 | ∆st−1, it) + λt = 0 (A.1)

To find the term v′(∆st | ∆st−1, it), we employ the envelope condition technique. This involves

differentiating 8 with respect to ∆st, and iterating the result one period forward i.e.

v′(∆st−1, it) = u′ (it − ((st+1 − st−1) + ∆st−1)) (A.2)

⇒ v′(∆st, it+1) = u′ (it+1 − ((st+2 − st) + ∆st))

= u′(it+1 −∆st+1)

Substitute (A.1) into (14) to arrive at

u′(it −∆st)− βIEu′(it+1 −∆st+1) + λt = 0 (A.3)

A.2 Optimal storage conditions for quadratic utility

The fundamental equimarginal result, shown in Equation 12 as u′(it −∆st) = βIEtu
′(it+1 −∆st+1),

with the addition of Lagrange Multipliers λt or subtraction of γt if the outflow/storage decision is

constrained by storage capacity s̄ or zero, respectively.

For the derivations below, note that marginal utility for quadratic utility defined in Equation 15

is given by u′(ot) = (1 − ot/ô) = (1 − (it − ∆st)/ô); IE(it) = µ, ∀i by assumption of the inflow

distribution, and IE(∆st+1) = 0 as shown in Appendix A.3.
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Case i: Neither storage constraint is binding

Substituting the quadratic marginal utility of outflows into 12 provides

1− (it −∆st)/ô = βIEt (1− (it+1 −∆st+1)/ô) . (A.4)

substituting IEt(∆st+1) = 0 and IEt(it+1) = µ on the right-hand side of Equation A.4 provides

1− (it −∆st)/ô = β(1− µ/ô). (A.5)

Substituting µ+ vt in place of it and st − st−1 in place of ∆st on the left-hand side of Equation A.5

and solving for st provides the optimal choice of storage to hold for period t:

sit = st−1 + vt + (1− β) (µ− ô) , (A.6)

where the i superscript indicates case i, the unconstrained storage choice. Substituting δ = (1− β)

and ô (representing the most favored outflow that which maximizes quadratic utility), provides

sit = st−1 + vt − δ (ô− µ) , (A.7)

where st−1 is carryover storage from last period and vt is this period’s deviation from mean inflow

as shown for the unconstrained case in Equation 16. Subtracting st from both sides provides the

unconstrained case shown as s∗t in Equation 17:

∆sit = vt − δ (ô− µ) . (A.8)

Since storage constraints are non-binding in this case, the optimality condition in 12 implies that

the optimal storage must be an interior solution ( 0 ≤ s∗t+1 ≤ s̄).
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Case ii: Storage capacity is binding

Optimality condition 13 applies in this case. Substituting the quadratic marginal utility of outflows

into Equation 13 provides

1− k(it −∆st) = βIEt (1− (it+1 −∆st+1)/ô)− λt. (A.9)

The left-hand-side is the current-period marginal utility of outflows. When storage capacity is

binding, outflows are higher than would be chosen if the storage constraint were not binding, so

marginal utility is lower than it would be (by the amount λt > 0) due to diminishing returns to

outflows.

Applying Substitutions as in Equation A.5 and rearranging, and noting again that the Kuhn-

Tucker condition Equation 10 implies λt > 0 when s̄t is binding, provides

λt = β(1− µ/ô)− (1− (it −∆st)/ô) > 0. (A.10)

Equation A.10 provides the basis for calculating the marginal cost of the storage constraint (equiva-

lently, the marginal value of additional storage capacity) for any period t. Rearranging Equation A.10

and substituting as in Equation A.7, and recognizing that in this case st = s̄ provides

siit = s̄ < st−1 + vt − δ (ô− µ) = sit, (A.11)

where superscript ii on st indicates an optimum constrained from above by s̄. Equation A.11 implies

siit = s̄ if st−1 + vt > s̄+ δ (ô− µ) , (A.12)

shown as s∗t in Equation 16. Alternatively, subtracting st−1 from both sides of Equation A.11

provides

∆siit = ∆̄st = s̄− st−1 < vt − δ (ô− µ) , (A.13)
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and

∆siit = ∆̄st if vt > ∆̄st + δ (ô− µ) , (A.14)

shown as ∆s∗t in Equation 17. Intuitively, if the available storage ∆̄st is less than this periods inflow

deviation plus a constant reflecting a discounted difference between most preferred outflows and

expected inflows, the manager will use all storage, and any additional inflow will spill, providing

more than optimal outflows and no storage for future flexibility. Note that if water is scarce on

average ((ô− µ) > 0), the manager will never choose to use all available storage when vt is negative

(less than average inflows).

Case iii: Storage non-negativity constraint is binding

Optimality condition 14 applies in this case. Substituting the quadratic marginal utility of outflows

into Equation 14 provides

1− (it −∆st)/ô = βIEt(1− (it+1 −∆st+1)/ô) + γt (A.15)

In this case, the constraint is that there is not as much carryover water in storage to satisfy the

unconstrained optimality conditions. Outflows are lower than a manager would choose if there were,

and the current marginal utility of water is higher than in the unconstrained case, by the amount

γt. The constraint that no water can be drawn from a facility with zero water in the current period

is analogous to a constraint on borrowing water from the future, the past, or another storage facility

given current conditions. The Lagrange multiplier γt is

γt = (1− (it −∆st)/ô)− β(1− µ/ô) > 0, (A.16)

The (optimized) Lagrange Multiplier γt represents the cost of not being able to borrow water from

the past, future, or another storage facility (or the value of being able to borrow). In a manner

consistent with derivations in case ii,

siiit = 0 > st−1 + vt + δ (ô− µ) , (A.17)
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and

siiit = 0 if st−1 + vt < δ (ô− µ) . (A.18)

The change in storage is defined in this case as

∆siiit = 0− st−1 > vt + δ (ô− µ) , (A.19)

implying

∆siiit = −st−1 if vt < δ (ô− µ) , (A.20)

shown in Equation 17 as s∗t for case iii. Storage will more often be driven to zero in a water scarce

environment ((ô− µ) > 0) than in an environment with overabundant water ((ô− µ) < 0).

A.3 Proof: Infinite sum of storage changes equals 0.

This proof shows that IEt[∆st+i] = 0, i = 0, 1, 2, .... The sum of outflows to date must equal the

sum of inflows to date minus any unreleased storage. So for any time t,

t∑
j=1

oj =
t∑

j=1

ij − ot. (C1)

Subtracting
∑t−1

j=1 oj from
∑t

j=1 oj based on Equation C1 provides

ot = it − (st − st−1) (C2)

= it −∆st.

If equation C2 holds for any period t it holds for each period i ≤ t, so

t∑
j=1

oj =
t∑

j=1

ij −
t∑

j=1

∆sj (C3)

38



Equating the right hand side of Equations C1 and C3 provides

t∑
j=1

∆sj = st. (C4)

Divide through by t to get 1
t

∑t
j=1∆sj = St

t . For any finite storage capacity, as t gets large,

limt→∞
st
t = 0, so

lim
t→∞

1

t

t∑
j=1

∆sj =
st
t
= 0 (C5)

By the law of large numbers (weak or strong), limt→∞
1
t

∑t
j=1∆sj = E[∆st]. So E[∆st] = 0

A.4 Impulse Response Function and Largest Eigenvalue

of a Matrix Relationship

Consider that the reduced form process in Equation 21 is stationary. We can define the lag operator

L2×1, such that LXt = Xt−1 and L2Xt = Xt−2, and use this to find the following infinite moving

average representation:

Xt = G1Xt−1 + et, (D1)

where Xt is assumed to be de-meaned so that the term G0 can be dropped without loss of generality.

Applying the lag operator to Equation D1 gives:

(I2×1 −G1L)Xt = et (D2)

Xt = (I −G1L)−1et (D3)

It can be shown that the infinite sequence (I − G1L)−1 := τ in D3 converges to the largest

eigenvalue of τ , which dictates the rate at which impulses in Xt due to et dissipate (the bigger the

eigenvalue value, the slower the dissipation rate and the smaller the eigenvalue value, the quicker

the dissipation rate). A proof of this is presented in the following link https://yutsumura.com/
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sequence-converges-to-the-largest-eigenvalue-of-a-matrix/. From Equation D3 we get:

Xt = (G1L)0et + (G1L)1et + (G1L)2et + (G1L)3et + ...

= et +G1et−1 +G1
2et−2 +G1

3et−3 + ... (D4)

The coefficients Gj
1, j = 1, 2, 3, ... in Equation D4 give the response of variables in Xt to impulses

from the structural shock vector et−j . In particular, we can compute the response of Xt to a shock

in period t for the periods t, t+ 1, t+ 2 and t+ j respectively as follows: ∂Xt
∂et

= G0
1,

∂Xt+1

∂et
= G1,

∂Xt+2

∂et
= G2

1 and ∂Xt+j

∂et
= Gj

1. The plot of ∂Xt+j

∂et
= Gj

1 for all j = 0, 1, 2, ...H (where H is the time

horizon of the plot) gives the impulse response function (IRF) of X. Notice that both the IRF of

X and the measure of resilience (ρ1) depend directly on the G1 matrix. However, the difference

between the two is that, whereas the IRFs provide visual representations of how individual variables

in X would respond to a one time shock in e, the largest eigenvalue of the system (also known as

the principal component of the system) ρ1, provides information about the overall responsiveness of

the system to shocks.
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