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Abstract

In this study, I demonstrate one way of eliminating seasonality in count time series
data using an actual data set of hepatitis A incidents in two Australian states. We
then fit the deseasonalized count data (or stabilized residuals) to two bivariate integer
value auto regressive models of order one (BINAR(1)); the first with negative binomial
innovations, and the second with normal innovations. I obtain and compare maximum
likelihood estimates, and diagnostics of the two BINAR(1) models showing that the
model that assumes bivariate negative binomial innovations fits the deseasonalized data
better than the one that assumes bivariate normal innovations. I therefore conclude
that the approach employed in our study to adjust for seasonality in count time series
data is relevant for preserving the count structure in deseasonalizing count data; and
provides an alternative to using normal approximations.

Keywords: Bivarivate integer-value AR(1), count time series, seasonality, deseasonalized data,

negative binomial innovations, normal innovations, maximum likelihood estimation, diagnostics
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1 Introduction

Many natural phenomena occur that yield multivariate count data. These data observed over time

produce multivariate count time series data. An example of this, is the number of people admitted

each week to the emergency rooms (ERs) of three different hospitals, in one year. [2] and [3], cited

in [5] proposed the integer autoregressive time series models for fitting count time series data. And

following this, both [5] and [4] developed and studied bivariate integer-value autoregressive models

of first order (BINAR(1)).

A particularly important problem arises when a count time series data set that is of interest

contains trend and/or seasonal component(s). When this happens, such trend and/or seasonality

component(s) must first be removed before any modeling can be done on the data. In general,

removing a trend and/or seasonality in a data set requires some form of time series decomposition

(but more on this later).

To put things in context, Figure 1 below shows time series plots of monthly hepatitis A incidents

in two Australian states: New South Wales (NSW) and Victoria (Vic), for the period January 2013

through December 2015. [4] estimated a BINAR(1) model using this data set. They identify

overdispersion as an issue and therefore assumed a bivariate negative binomial error component in

their BINAR(1) estimation to address this problem. The authors however did not address the issue

of seasonality that appear to be present in the data; a seasonal pattern can be observed, with spikes

in hepatitis A incidents occurring every Australian summer (February).

This study therefore focuses on two things: first, remove the seasonal component in the hepatitis

A data set; and second, use the seasonally-adjusted (or deseasonalized) data to re-fit the BINAR(1)

model with negative binomial innovation (error component) of [4], and compare that model fit with

a second BINAR(1) estimation that assumes normal innovations. The broad relevance of this study

that it demonstrates one way of handling seasonality in count time series data. Thus, potentiabelly

providing an alternative to the use of normal approximations for fitting seasonally-adjusted residuals

of count time series data.

The remainder of this study is organized as follows. In Section 2, we present the steps, and

remove seasonality in the hepatitis A data set. In Section 3, we describe general specifications
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of BINAR(1) processes with negative binomial and normal innovations, and obtain conditional

likelihood functions required to fit the respective BINAR(1) models. In Section 4, we present and

compare the maximum likelihood estimation results and perform model fit diagnostics for the two

models considered. We provide concluding remarks in Section 5.

Figure 1: Time series of hepatitis A incidents in two Australian states
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2 Eliminating Seasonality in Count Time Series Data

The first step in dealing with seasonality in any time series is to determine the underlying model

that can be used to decompose the observed data. Decomposition models are typically additive

or multiplicative, but can also take other forms such as pseudo-additive [1]. An additive model is

appropriate when the amplitude of both the seasonal and irregular variations in a time series do not

change as the level of the trend rises or falls. While a multiplicative model is appropriate when the

amplitude of both the seasonal and irregular variations increase as the level of the trend rise. We

use an additive specification in this study, since that is better suited for our hepatitis A data set.

The general additive model expresses the observed time series (Xt) as the sum of three in-

dependent components: the seasonal st (or repeating short-term cycle in the series), the trend mt

(increasing or decreasing value in the series), and the irregular it (or random variation in the series),

see [1]. That is,
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Xt = st +mt + it (1)

where E(it) = 0, st+p = st and
∑p

i=1 si = 0. p is the period of the seasonal component (which is 12

in the case our hepatitis A data set). For convenience, we index the time series by year and month

as follows: xl,k, l = 1, 2, 3, k = 1, ..., 12 denote the number of hepatitis A cases reported for month

k in year l.

[1] notes that if the trend component in a data is small (as in the hepatitis A data) it is not

unreasonable assume that trend component of Equation (1) is constant for each year. So that, since∑12
k=1 sk = 0, we obtain the natural unbiased estimate

m̂ =
1

12

12∑
k=1

xl,k, (2)

while for sk, 1, ..., 12 we obtain the estimates,

ŝk =
1

3

3∑
l=1

(xl,k − m̂l), (3)

which then satisfies the requirement that
∑12

k=1 sk = 0. The seasonal component in Equation (1) is

therefore removed by simply computing xl,k − ŝk to arrive at a deseasonalized time series. Notice

that the deseasonalized data is no longer in count form, and so some adjustment is necessary to

restore the count structure. We do this by adding the smallest observation in the deseasonalized

data to all observations, and round off the result to the nearest integer. We adjust further by adding

a constant positive integer value to the rounded values. In summary, we compute

xdl,k = min
l∗

(xl∗,k − ŝk) + (xl,k − ŝk) + c (4)

where xdl,k is the deseasonalized count data and c is a positive integer.

Figure 2 shows the deseasonalized hepatitis A data for the two Australian states 1, while Figure

3 displays the autocorrelation functions (ACF) and partial autocorrelation functions (PACF) for the

1The plots in Figure 2 exclude March 2015 values for both states, because they exhibit possible outlier
behavior (see Figure 8 in appendix).
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deseasonalized hepatitis A data. Observe that the deseasonalized time series in both states exhibit

significant first order autocorrelation, hence, fitting bivariate AR(1) models is appropriate.

Figure 2: Deseasonalized time series plot of hepatitis A incidents in two Australian
states
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Figure 3: ACF and PACF plots of deseasonalized hepatitis A time series for two
Australian states
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3 Bivariate INAR(1) Process with Negative Binomial and

Normal Innovations

[4] provides a detailed derivation and analysis of the joint conditional likelihood function required

to obtain maximum likelihood estimates of the bivariate INAR(1) process with negative binomial

innovations. We therefore recommend reading Section 2 of [4] alongside this study. In what follows

below, we present a general description of the BINAR(1) model, including the conditional likelihood

function needed to compute parameter estimates and numerical diagnostics.

3.1 Bivariate AR(1) Process

For t = 1, 2, ..., let Yt = (Y1,t, Y2,t)
′ and Rt = (R1,t, R2,t)

′ be real-valued random vectors, and let α1

and α2 be scalar constants belonging to the unit interval [0, 1]. A bivariate autoregressive process

of order 1 is given by

Yt = AYt−1 +Rt =

α1 0

0 α2


Y1,t−1
Y2,t−1

 +

R1,t

R2,t

 . (5)

From Equation (5), one can extract

Yj,t = αjYj,t−1 +Rj,t for j = 1, 2. (6)

The components of the random vector Rt are often referred to as innovations. Suppose R1,R2, ...

are iid such that E(Rj,t) = µj ∈ IR and variance Var(Rj,t) = σ2j ∈ IR+ where j = 1, 2. Then, from
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(6) we have that

E(Yj,t) =
µj

1− αj
(7)

Var(Yj,t) =
σ2j

1− α2
j

(8)

Cov(Yj,t, Yj,t+h) = αhj Var(Yj,t)

Corr(Yj,t, Yj,t+h) = αhj , for h = 0, 1, 2, ....

Notice that the correlation between the elements of Yt originate from correlations within Rt. In

particular, it can be shown that covariance and correlation between Y1,t and Y2,t+h are respectively

analogously defined as

Cov(Y1,t+h, Y2,t) =
αh1

1− α1α2
Cov(R1,t, R2,t), (9)

Corr(Y1,t+h, Y2,t) =
αh1
√

(1− α2
1)(1− α2

2)

(1− α1α2)σ1σ2
Cov(R1,t, R2,t), for h = 0, 1, 2, ... (10)

The covariance Cov(R1,t, R2,t), or equivalently, Cov(Y1,t+h, Y2,t) and Corr(Y1,t+h, Y2,t) depend on

distribution of the random innovation vector R = (R1, R2)
′ . In this study we consider the cases

where random innovations follow negative binomial and normal distributions.

3.2 Bivariate Negative Binomial Distribution

Following [4], suppose Rt follows a bivariate negative binomial (NB) distribution. We can derive

the covariance structure Rt as follows.

Let θ be a Gamma random variable with shape parameter 1/β and scale parameter 1. Given θ,

and assume that R1 and R2 are independently distributed Poission random variables with means

λ1βθ and λ2βθ, respectively. The joint probability mass function of R = (R1, R2)
′ is

fR(r1, r2|β) =
(r1 + r2 + β−1)

r1!r2!Γ(β−1)

λ1λ2β
−(β−1)

(λ1 + λ2 + β−1)r1+r2+β−1 (11)

for r1, r2 = 0, 1, 2, .... According to [4], the marginal distribution of Ri, for i = 1, 2, is NB(η1 =
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1/β, η = λi) and Cov(R1, R2) = βλ1λ2, which completes the Equations (9) and (10). Refer to [4]

for the joint conditional distribution of Rt given Rt−1 = r.

3.3 Bivariate Normal Distribution

Let R1 and R2 be two normally distributed random variables, N(µ1, σ
2
1) and N(µ2, σ

2
2) respectively.

The random vector R = (R1, R2)
′ is a bivariate normal random variable with mean and covariance

parameter restrictions:

1. µ1, µ2,∈ IR

2. σ1, σ2 ∈ IR+

3. σ12 = σ21 = ρσ1σ2, where σ12 = σ21 and ρ are respectively the covariance and correlation

between R1 and R2

4. σ12 ≤ σ1σ2 (Cauchy - Schwartz)

The joint probability density function of R = (R1, R2)
′ is

fR(r1, r2|µ1, µ2, σ1, σ2, ρ) =
exp

{
− 1

2(1−ρ2)

[
(r1−µ1)2

σ2
1

+ (r2−µ2)2
σ2
2
− 2ρ(r1−µ1)(r2−µ2)

σ1σ2

]}
2πσ1σ2

√
1− ρ2

(12)

where r1, r2 ∈ (−∞,∞) and the mean and covariance matrix of R = (R1, R2)
′ are respectively

defined as µ = (µ1, µ2) and Σ =

 σ21 σ1σ2ρ

σ2σ1ρ σ22

 –– a positive semi-definite matrix. In this case,

Cov(R1, R2) = σ1σ2ρ.

3.4 Joint Conditional Distribution of Yt Given Yt−1 = yt−1

The joint conditional distribution of Yt given Yt−1 = yt−1 is fundamental to obtain the likelihood

function required to obtain estimates for the parameter vector θ = (α1, α2, µ1, µ2, σ1, σ2, ρ)
′ . The
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joint conditional pdf of Yt given Yt−1 = yt−1 is

fY (Yt|Yt−1,θ) =
1

2π|Σ|1/2
exp

{
−1

2
[Yt − (AYt−1 + µ)]

′
Σ−1 [Yt − (AYt−1 + µ)]

}
(13)

=
1

2π|Σ|1/2
exp

{
−1

2
R

′
tΣ
−1Rt

}

The mean and variance of Yj,t|yj,t−1 are respectively,

E(Yj,t|yj,t−1) = αjyj,t−1 + µj , Var(Yj,t|yj,t−1) = Var(Rj) = σ2j for j = 1, 2.

The conditional covariance between Y1,t and Y2,t is

Cov(Y1,t, Y2,t|yt−1) = Cov(R1,t, R2,t) = σ1σ2ρ

3.5 Maximum Likelihood Estimation

Let (y1, ..., yt) be all observations up to and including those at time t. The conditional likelihood

function at time t has the form

L(θ|y1, ..., yt) =
t∏
i=1

fY (Yt|Yt−1,θ) (14)

where y0 is a specified initial value. In estimating θ, one may skip the specification of y0, and start

measuring likelihood contributions at time i = 2 rather than i = 1, and then maximize L(θ|y1, ..., yt)

with respect to θ.

3.6 Diagnostics

Here, I describe diagnostics for assessing the goodness of fit. Typically, in model fitting, this is

accomplished by means of residual analysis [5]. The classical definition of a residual is the difference

between the observed and fitted value. The conditional residual of Yj,t|yj,t−1 is

R̂j,t = Yj,t − α̂jYj,t−1 − µ̂j (15)
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where α̂j and µ̂j are the maximum likelihood estimates of αj and µj .

4 Numerical Results

Using the seasonally-adjusted hepatitis A data presented in Figure 2, I obtain maximum likelihood

estimates (base on the general specification in Equation (14) for two bivarite AR(1) models: the first

with negative binomial innovations, and the second with normal innovations. I report and compare

the log-likelihood and AIC values, as well as dignostic plots of residuals 2 for the two model fits.

First, a total of five parameters are estimated for the BINAR(1) model fit with negative bino-

mial innovations, and seven parameters for the model with normal innovations. The log-likelihood

and AIC values for the BINAR(1) model fit with negative binomial innovations are respectively,

(−139.2525) and (278.505), but (−136.0692) and (286.1384) respectively for the model fit with nor-

mal innovations. Thus, the model fit with negative binomial innovations fits the data better than

the one with normal innovations based on AIC.

The residual and Ljung-Box test plots in Figures 4 and 5 show that there is no lack of fit in

either of the two fitted models. The residuals of the fit with negative binomial innovations however,

are less spread out than the residuals of the fit with normal innovations. Finally, the ACF and

PACF plots of residuals of the two model fits are presented in Figures 6 and 7. Observe that none

to ACF and PACF plots exhibits signs of auto-correlations in the residuals, hence satisfying the

assumption of independence.

5 Conclusion

Adjusting for seasonality (and/or trends) in count time series using available classical (or traditional)

methods can result in stationary residuals that are effectively non-count in nature 3. A common

approach then, is to model the data as an approximation of some continuous distribution (often

normal). The method illustrated in this study shows an alternative way of keeping the count
2Residuals are computed using Equation (15).
3Applying the method of differencing to remove seasonality and/or trends in count time series may

preserve the count structure in the final stationary data. However, differencing generally results in data loss
at the head of a data set; and may therefore not be suitable for small data sets.
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structure in count time series that is seasonalized and/or trended. Most importantly, I show that

keeping the count structure delivers a better model fit than using a continuous approximation.
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Figure 4: Residual and Ljung-Box test plots for BINAR(1) model fit with neg-
ative binomial innovations to deseasonalized hepatitis A data for two Australian
States
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Figure 5: Residual and Ljung-Box test plots of BINAR(1) model fit with normal
innovations to deseasonalized hepatitis A data for two Australian States
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Figure 6: ACF and PACF plots of residuals of BINAR(1) model fit with nega-
tive binomial innovations to deseasonalized hepatitis A data for two Australian
States
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Figure 7: ACF and PACF plots of residuals of BINAR(1) model fit with normal
innovations to deseasonalized hepatitis A data for two Australian States
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Appendices

Figure 8: Deseasonalized time series plots of hepatitis A incidents in two Australian states
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Table 1: The Hepatitis A data for two Australian states
.
Period NSW Vic Period NSW Vic
Jan-13 9 2 Jul-14 2 3
Feb-13 18 9 Aug-14 7 4
Mar-13 3 8 Sep-14 7 6
Apr-13 1 5 Oct-14 6 5
May-13 3 5 Nov-14 10 3
Jun-13 6 5 Dec-14 10 6
Jul-13 5 7 Jan-15 11 6
Aug-13 4 5 Feb-15 14 4
Sep-13 3 2 Mar-15 13 2
Oct-13 2 3 Apr-15 5 4
Nov-13 4 1 May-15 1 3
Dec-13 4 1 Jun-15 4 2
Jan-14 10 8 Jul-15 2 1
Feb-14 12 8 Aug-15 6 3
Mar-14 6 10 Sep-15 3 1
Apr-14 6 11 Oct-15 2 0
May-14 3 4 Nov-15 5 2
Jun-14 4 2 Dec-15 2 4

Source: The NNDSS.
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Table 2: The Deseasonalized Hepatitis A data for two Australian states
.
Period NSW Vic Period NSW Vic
Jan-13 5 5 Jul-14 5 5
Feb-13 9 7 Aug-14 7 5
Mar-13 2 9 Sep-14 9 8
Apr-13 3 9 Oct-14 9 8
May-13 7 10 Nov-14 10 6
Jun-13 7 11 Dec-14 11 8
Jul-13 8 7 Jan-15 7 6
Aug-13 4 5 Feb-15 5 2
Sep-13 5 12 Mar-15 12∗ 1∗

Oct-13 5 7 Apr-15 7 3
Nov-13 4 5 May-15 5 4
Dec-13 5 5 Jun-15 5 4
Jan-14 6 5 Jul-15 5 3
Feb-14 3 6 Aug-15 6 4
Mar-14 5 5 Sep-15 5 3
Apr-14 8 5 Oct-15 5 3
May-14 7 5 Nov-15 5 5
Jun-14 5 3 Dec-15 3 6

* Exhibits possible outlier behavior, hence are eliminated from
the plots in figure 2
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